Interface dynamics for copper electrodeposition: the role of organic additives in the growth mode.

نویسندگان

  • Pablo F J de Leon
  • Ezequiel V Albano
  • R C Salvarezza
  • H G Solari
چکیده

An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local Cu2+ ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with Cu2+ for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPSA effects on copper electrodeposition investigated by molecular dynamics simulations.

In superconformal filling of copper-chip interconnects, organic additives are used to fill high-aspect-ratio trenches or vias from the bottom up. In this study we report on the development of intermolecular potentials and use molecular dynamics simulations to provide insight into the molecular function of an organic additive (3-mercaptopropanesulfonic acid or MPSA) important in superconformal e...

متن کامل

Effect of Organic Additives on Formation and Growth Behavior of Micro-Void in Electroplating Copper Films

To understand a void formation mechanism in electroplated Cu interconnects used for Si-ULSI (ultra-large scale integrated) devices, microstructures of Cu films which were prepared by the electroplating technique using plating baths with or without organic additives were investigated by transmission electron microscopy (TEM). In the as-deposited samples, a high density of micro-voids were observ...

متن کامل

Effect of Additives on Shape Evolution during Electrodeposition I. Multiscale Simulation with Dynamically Coupled Kinetic Monte Carlo and Moving-Boundry Finite-Volume Codes

A multiscale simulation model was developed to simulate shape evolution during copper electrodeposition in the presence of additives. The model dynamically coupled a kinetic Monte Carlo KMC model for surface chemistry and roughness evolution with a finite volume FV model for transport and chemical reactions in the electrolyte and a level-set code for tracking macroscopic movement of the metal/e...

متن کامل

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Synthesis of Cu-TiO2Nanocomposite and Investigation of the Effectiveness of PEG, Pectin, and CMCas Additives

Recently, TiO2 has been widely used as a photocatalyst for degradation of environmental pollutants. In the present study, the advantage of metal doping onto TiO2 for enhanced photocatalitic activity has been investigated. Copper-Titanium dioxide nanocomposites were prepared by the sol-gel method in the presence of Carboxy Methyl Cellulose (CMC), Pectin, and Poly Ethylene Glycol (PEG) as additiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002